Complex hyperbolic quasi-Fuchsian groups

نویسندگان

  • John R. Parker
  • Ioannis D. Platis
چکیده

A complex hyperbolic quasi-Fuchsian group is a discrete, faithful, type preserving and geometrically finite representation of a surface group as a subgroup of the group of holomorphic isometries of complex hyperbolic space. Such groups are direct complex hyperbolic generalisations of quasi-Fuchsian groups in three dimensional (real) hyperbolic geometry. In this article we present the current state of the art of the theory of complex hyperbolic quasi-Fuchsian groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cosh-Gordon equation and quasi-Fuchsian groups

We show propositions in favour of relations between the phase space of 3D gravity, moduli of quasi-Fuchsian groups, global solutions of cosh-Gordon equations and minimal surfaces in hyperbolic spaces.

متن کامل

Liouville Action and Weil-Petersson Metric on Deformation Spaces, Global Kleinian Reciprocity and Holography

We rigorously define the Liouville action functional for the finitely generated, purely loxodromic quasi-Fuchsian group using homology and cohomology double complexes naturally associated with the group action. We prove that classical action – the critical value of the Liouville action functional, considered as a function on the quasiFuchsian deformation space, is an antiderivative of a 1-form ...

متن کامل

Minimal Lagrangian Surfaces in Ch and Representations of Surface Groups into Su(2, 1)

We use an elliptic differential equation of Ţiţeica (or Toda) type to construct a minimal Lagrangian surface in CH from the data of a compact hyperbolic Riemann surface and a cubic holomorphic differential. The minimal Lagrangian surface is equivariant for an SU(2, 1) representation of the fundamental group. We use this data to construct a diffeomorphism between a neighbourhood of the zero sect...

متن کامل

Complex Hyperbolic Fenchel-nielsen Coordinates

Let Σ be a closed, orientable surface of genus g. It is known that the SU(2, 1) representation variety of π1(Σ) has 2g− 3 components of (real) dimension 16g− 16 and two components of dimension 8g−6. Of special interest are the totally loxodromic, faithful (that is quasi-Fuchsian) representations. In this paper we give global real analytic coordinates on a subset of the representation variety th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008